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Abstract. The paper is an exposition of some old results on the stability of
the K-method and recent results on calculation of the K-functional.

1. Introduction

Since the publication of the classical paper by J.L. Lions and J. Peetre [LP],
real interpolation theory has developed into a rich theory with applications to many
different areas of analysis. In this paper we give a short introduction to the general
K-method of interpolation and demonstrate its surprising stability.

A number of applications of interpolation theory, in particular some recent
problems in image processing and singular integral operators, require the com-
putation of suitable K-functionals, as well as precise algorithms for constructing
nearly optimal minimizers. In this paper we will present an algorithm for construct-
ing nearly optimal minimizers based on a generalization of the classical Calderón-
Zygmund decompositions. Our algorithm also leads to new formulas for calculating
suitable K-functionals. In particular, we will illustrate our algorithm on the model
couple (L1, Lipα).

2. Preliminaries

We start by briefly recalling the main notions of interpolation theory (see [BL]).
Let X0 and X1 be two Banach spaces embedded in some topological vector

space X. We will say that the spaces X0 and X1 form a Banach couple �X =
(X0,X1) if the following “compatibility” condition holds:

• If the sequence yn ∈ X0 ∩ X1, n = 1, ... is such that it converges in the
norm of X0 to the element x0 ∈ X0 and in the norm of X1 to the element
x1 ∈ X1, then x0 = x1.

This condition allows us to introduce a Banach structure on the linear spaces
X0 ∩X1 and X0 +X1, namely

kxkX0∩X1
= max(kxkX0

, kxkX0
), kxkX0+X1

= inf
x=x0+x1

(kx0kX0
+ t kx1kX1

).
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Let �X = (X0,X1), �Y = (Y0, Y1) be two Banach couples. A linear operator T from

X0 +X1 to Y0 + Y1 is called a bounded linear operator from the couple �X to the

couple �Y if the restrictions of T on Xi (i = 0, 1) are bounded linear operators from
Xi to Yi.

A Banach space X ⊂ X0+X1 is called an intermediate space for the couple �X
if the continuous embeddings X0 ∩X1 ⊂ X ⊂ X0 +X1 hold.

An intermediate space X is called an interpolation space if for any bounded

linear operator T from the couple �X to itself the restriction of T on X is a bounded
linear operator from X to X.

Let X be an intermediate space for the couple �X and let Y be an intermediate

space for the couple �Y . We will say that the spaces X and Y are relative interpo-

lation spaces if a restriction of any bounded linear operator T from the couple �X

to the couple �Y is a bounded linear operator from X to Y .

3. The K-method of Interpolation: Introduction to a General Theory
of K-spaces

The modern theory of real interpolation is based on the notion of the K-
functional introduced by J. Peetre. Let us recall its definition.

Let x ∈ X0+X1, then the K-functional of x is a nonnegative concave function
on R+ = (0,∞) defined by the formula

K(t, x; �X) = inf
x=x0+x1

(kx0kX0
+ t kx1kX1

), t > 0.

The K-functional can be obtained from a “distance function”, the so-called
E-functional :

E(t, x; �X) = inf
kx1kX1≤t

kx− x1kX0
, t > 0.

Remark 1. We deviate somewhat from the standard notation E(t, x; �X) =
infkx0kX0≤t kx− x0kX1

.

Clearly,

K(t, x; �X) = inf
s>0
(E(t, x; �X) + ts)

and conversely for any Banach couple �X we also have

E(s, x; �X) = sup
t>0
(K(t, x; �X)− ts).

One of the advantages of using the K-functional instead of the E-functional is
that the K-functional possesses several very nice properties that the E-functional
does not have.

Let us now list the main properties of the K-functional.

• For a fixed t > 0 the expression K(t, ·; �X) is a norm on the space X0+X1.

• For the couple �XT = (X1,X0) we have K(t, x; �X
T ) = tK(t−1, x; �X).

The proofs of these properties are simple and direct.
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Much less trivial is the following K-divisibility property (see [BK], pp. 315-
337).

• Let
K(·, x; �X) ≤

∞X
i=1

ϕi,
∞X
i=1

ϕi(1) <∞,

where ϕi (i = 1, ...) are nonnegative concave functions on R+. Then there
exists a decomposition x =

P∞
i=1 xi such that

(3.1) K(·, xi; �X) ≤ γϕi, i = 1, .... ,

where γ is an absolute constant.

Remark 2. It is known (see [BK] and [CJM]) that 1.5 < γ < 6.

The importance of the K-functional for interpolation arises from the following
simple proposition.

Proposition 1. Let T be a linear bounded operator from the couple �X =

(X0,X1) to the couple �Y = (Y0, Y1). Then we have the estimate

K(t, Tx; �Y ) ≤ inf
x=x0+x1

(kTx0kY0 + t kTx1kY1) ≤ maxi=0,1
kTkXi→Yi

K(t, x; �X).

On the basis of the K-functional we can construct interpolation spaces (K-
spaces). A Banach space Φ of measurable functions on R+ is called a parameter of
the K-method if it satisfies the following two properties:

• if f ∈ Φ and |g| ≤ |f | then g ∈ Φ and kgkΦ ≤ kgkΦ;
• min(1, t) ∈ Φ.

The last condition means that Φ contains at least one nonnegative concave

function. Then the space KΦ( �X) is defined as the set of elements x ∈ X0+X1 such
that

kxkKΦ( �X) =
°°°K(·, x; �X)°°°

Φ
.

It is possible to verify that KΦ( �X) is an intermediate space for the couple �X.
Moreover, from Proposition 1 we immediately obtain

Theorem 1. (On interpolation) Let T be a bounded linear operator from the

couple �X = (X0,X1) to the couple �Y = (Y0, Y1). Then T is a bounded linear

operator from the space KΦ( �X) to the space KΦ(�Y ).

Remark 3. As we have seen, the interpolation theorem follows directly from
the definitions. This triviality is “compensated” by the difficulty of calculation of

spaces KΦ( �X) for concrete couples �X.

For some couples all interpolation spaces are K-spaces and so they can be
parameterized by the parameters of the K-method. An important example of such
couples is presented in the following theorem.

Theorem 2. Let �X = (Lp0(ω0), Lp1(ω1)) be a couple of weighted Lebesque

spaces. Then all interpolation spaces of �X are K-spaces.

The proof of the theorem follows from the result of G. Sparr which states
that the couple (Lp0(ω0), Lp1(ω1)) is a Calderón couple and Lemma 4.1.12 from

[BK]. Recall that the couple �X = (X0,X1) is called a Calderón couple if from
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the inequality K(·, x; �X) ≥ K(·, y; �X) it follows that there exists a bounded linear
operator T : �X → �X such that Tx = y.

3.1. Stability of K-spaces. Now we are ready to formulate the main results
of the general theory: reiteration and duality.

To formulate the reiteration theorem first note that different parameters Φ of

the K-method can lead to the same space KΦ( �X). This happens because the K-
functional is a nonnegative concave function and therefore only the restriction of
the norm of Φ on the cone of nonnegative concave functions on R+ is important.
For example, if we consider a parameter Φ̂ of the K-method defined by the norm

kfkΦ̂ =
°°°f̂°°°

Φ
,

where by f̂ we denote the least concave majorant of the function |f |, then we have
KΦ( �X) = KΦ̂(

�X) for all couples �X even with the equality of the norms.
The question that is answered in the reiteration theorem is the following.

Problem 1. Let �X be a Banach couple. Suppose that the spaces Y0, Y1 are

obtained by the K-method from a couple �X, i.e. Yi = KΦi( �X) (i = 0, 1). How can

we calculate the space KΦ(�Y )?

Surprisingly, the resulting space is again the K-space of the initial couple �X
and a formula for its parameter can be given.

Theorem 3. (On reiteration) Let Φ, Φ0, Φ1 be parameters of the K-method.
Then the following formula is correct:

(3.2) KΦ(KΦ0( �X),KΦ1( �X)) = KΨ( �X),

where Ψ = KΦ(Φ̂0, Φ̂1). The equality of spaces in (3.2) means that they coincide

and their norms are equivalent with the constants of equivalence independent of �X.

The proof of the reiteration theorem follows quite easily from the K-divisibility
(see [BK], Theorem 3.3.11).

Let us now turn to the duality. Let a couple �X = (X0,X1) be regular, i.e. the
Banach space X0 ∩ X1 is dense in X0 and in X1. For a regular couple the dual
spaces X 0

0, X
0
1 are embedded in the space (X0 ∩X1)

0 and form a Banach couple

(see [BL]). Moreover, if X is an intermediate space for the couple �X, then we can
define its dual space X 0 ⊂ (X0 ∩X1)

0 as a dual of the space X0, where by X0 we
denote the closure of the set X0 ∩X1 in X.

The problem of duality can be formulated as follows.

Problem 2. Suppose that a couple �X is regular. How can we calculate the

dual space to KΦ( �X)?

Of course, it is natural to expect that the dual of a K-space is again a K-

space for the dual couple �X 0 = (X 0
0,X

0
1). Unfortunately, this is not correct: the

dual to the space KΦ( �X) does not have to be an interpolation space for the couple
�X 0, as can be seen from the proof of Theorem 2.4.17 in [BK]. Nevertheless, the

expectation is met if we impose some mild conditions on �X or on the parameter Φ.
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Definition 1. A parameter Φ of the K-method is called nondegenerate if Φ
contains at least one nonnegative concave function f such that

lim
t→0

f(t)

t
= lim

t→∞ f(t) =∞.

Definition 2. A couple �X is called relatively complete if the unit ball of the
space X0 ∩X1 is a closed subset of the space X0 +X1.

To formulate the duality result we will need to consider the Calderón operator

(Sf)(t) =

Z t

0

f(s)
ds

s
+ t

Z ∞
t

f(s)
ds

s2
,

The operator S is defined on the functions f on R+ that belong to the space L1(ω),
ω = min(1s ,

1
s2 ), so the integrals in the definition of S converge absolutely.

Next theorem follows from Theorem 3.5.9, Theorem 3.7.2, and Proposition
3.1.17 from [BK].

Theorem 4. (On duality) Let �X be a regular couple. Suppose that one of the
following conditions is satisfied:

a) the parameter Φ of the K-method is nondegenerate;

b) �X is a relatively complete couple.

Then the dual space to KΦ( �X) is a K-space for the dual couple and

KΦ( �X)
0 = KΨ( �X

0),

where the norm in the parameter Ψ is given by the expression

kfkΨ = sup
½Z ∞

0

f(t)g(
1

t
)
dt

t
: kSgkΦ ≤ 1

¾
.

4. Calderón-Zygmund type decompositions and K-functional

To apply the theory we need to calculate K-functionals. This is usually a
difficult problem and each solved case contains some nontrivial information.

Let us look at some examples.

Example 1. Let us consider the couple (L1, L∞). It is known that

(4.1) K(t, f ;L1, L∞) ≈ t(Mf)∗(t),

where

Mf(x) = sup
Q3x

1

|Q|
Z
Q

|f |
is a Hardy-Littlewood maximal function. Here and below the constants of equiva-
lence are independent of f and t, and Q is a cube in Rn with sides parallel to the
coordinate axes. Since Lp = (L1, L∞)1− 1

p ,p
, we have

kfkLp ≈
µZ ∞

0

(t−(1−
1
p )K(t, f ;L1, L∞))p

dt

t

¶ 1
p

=µZ ∞
0

((Mf)∗(t))p dt

¶ 1
p

=

µZ
Rn
(Mf(x))pdx

¶ 1
p

= kMfkLp
and we can see that the formula (4.1) leads to the Hardy-Littlewood maximal theo-
rem: kfkLp ≈ kMfkLp .
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Example 2. Let us consider the couple (Lp, Ẇ
k
p ), p ∈ (1,∞). It is known that

K(t, f ;Lp, Ẇ
k
p ) ≈ ωk(f, t

1
k )p,

where ωk(f, t)p is the k-th modulus of continuity in Lp. From this formula and the

closedness of the unit ball Ẇ k
p in Lp for p ∈ (1,∞) follows the description of the

Sobolev space Ẇ k
p in terms of the modulus of continuity

kfkẆk
p
≈ sup

t>0

1

t
K(t, f ;Lp, Ẇ

k
p ) ≈ sup

t>0

1

t
ωk(f, t

1
k )p.

For some problems it is important to have an algorithm for constructing a
family of elements ut ∈ X1 such that

K(t, x;X0,X1) ≈ kx− utkX0
+ t kutkX1

,

with the constants of equivalence independent of x and t. We will call such de-
compositions near minimizers for the K-functional. For some couples it is easier
to construct near minimizers for the E-functional, i.e. such a family of elements
ut ∈ X1 that

kutkX1
≤ ct and kx− utkX0

≤ cE(
t

c
, x;X0,X1),

with c ≥ 1 independent of x and t > 0. Note that if we take t = 2cK(s,x;X0,X1)
s

then it is not difficult to show that ut will be a near minimizer for the K-functional
at the point s.

An important example of a problem for which we need to find a near minimizer
comes from image processing. In the paper [ROF] L. Rudin et al. proposed to
reconstruct the geometrical properties of an object from its noisy image by means
of calculating the function ut which minimizes the L-functional

L(t, f ;L2, BV ) = inf
u∈BV

(kf − uk2L2 + t kukBV ),

where all functions are defined on a rectangle in R2 and BV is a space of functions
of bounded variations defined by the seminorm

kfkBV = sup
t>0

1

t
ω1(f, t)1.

Recently this approach to denoising has become quite popular, see, for example,
[TNV] and the book [M].

Note that for s = tK(t, f ;L2, BV ) we have

L(s, f ;L2, BV ) ≈ K(t, f ;L2, BV )
2

(see [BK], p. 520). Therefore instead of the L-functional it is possible to consider
the K-functional

K(t, f ;L2, BV ) = inf
u∈BV

(kf − ukL2 + t kukBV )

and it is sufficient to solve the problem of constructing minimizers for the K-
functional. A wavelet-based approach to this problem was considered in several
papers, see [CDPH], [CDDD], and [BDKPW].
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Let us formulate the result for the multivariate Haar system Hi (i ∈ ∆) nor-
malized in the space BV , i.e. kHikBV = 1 for all i. We let

GN (f) =
X

i∈ ∆N
ciHi, f =

X
i

ciH,

where ∆N is a subset of N elements of ∆ that correspond to the coefficients ci with
the largest absolute values. Then we have

Theorem 5. (see [BDKPW]) Let p∗ = n
n−1 , where n ≥ 2 is a dimension.Then

K(N−
1
n , f ;Lp∗ , BV ) ≈ kf −GN (f)kLp∗ +N−

1
n kGN (f)kBV .

So we see that a near minimizer for the couple (Lp∗ , BV ) can be constructed
using a greedy wavelet algorithm.

Below we will suggest another general approach to the problem of construct-
ing near minimizers and calculating the K-functional. Our approach is based on
a generalization of classical Calderón-Zygmund decompositions. These decomposi-
tions were used recently to solve some problems in the theory of singular integral
operators, see [KK], [KiKr] and [KiKr1].

4.1. Classical Calderón-Zygmund Decompositions and Near Mini-
mizers. In their classical paper [CZ], A. Calderón and A. Zygmund suggested a
simple construction that proved to be a very powerful and useful tool in harmonic
analysis. The decomposition is constructed as follows.

Let f ∈ L1 and t > 0 be fixed. Then using stopping time technique it is possible
to construct a family of dyadic cubes {Qi}i∈I with nonoverlapping interiors such
that

t ≤ 1

|Qi|
Z
Qi

|f | ≤ 2nt, i ∈ I

and °°fχRn\∪Qi

°°
L∞
≤ t.

Then the Calderón-Zygmund decomposition is defined as

f = ft + (f − ft),

where the so-called ”good” function ft is given by the formula

ft =
X
i

ciχQi + fχRn\∪Qi
, ci =

1

|Qi|
Z
Qi

f , i ∈ I.

Clearly, kftkL∞ ≤ 2nt. More interestingly, the function ft is a near minimizer for
the E−functional

kf − ftkL1 ≤ 4E(
t

2
, f ;L1, L∞).

Indeed,

kf − ftkL1 ≤
X
i

Z
Qi

|f − fQi | ≤ 2
X
i

Z
Qi

|f | ≤ 2t
X
i

|Qi|
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and it only remains to note that

E(
t

2
, f ;L1, L∞) = inf

kgkL∞≤ t
2

kf − gkL1 ≥ inf
kgkL∞≤ t

2

ÃX
i

Z
Qi

|f − g|
!
≥(4.2)

inf
kgkL∞≤ t

2

ÃX
i

(

Z
Qi

|f |−
Z
Qi

|g|)
!
≥
X
i

(t |Qi|− t

2
|Qi|) ≥ t

2

X
i

|Qi| .

This simple observation suggests that an extension of the Calderón-Zygmund
construction for couples different from (L1, L∞) could be useful for constructing
near minimizers.

4.2. A Generalization of the Calderón-Zygmund Construction. To
avoid technicalities we will only consider here the model case (L1, Lipα), where
the space Lipα is defined by the seminorm

kfkLipα = sup
x6=y

|f(x)− f(y)|
|x− y| .

The exposition below follows [Kr] . Our algorithm will provide a method to con-
struct near minimizers for the E-functional of the couple (L1, Lipα).

Let us fix f ∈ L1 and t > 0. Constructing the “good” function ft ∈ Lipα is
done in three steps.

4.2.1. Step 1. Limiting cubes. In this step we use a stopping time technique to
construct a family of cubes that possesses two important properties.

For x ∈ Rn let us consider a function

ϕx(r) =
1

|Q(x, r)|1+α
n
inf
c

Z
Q(x,r)

|f − c| ,

where Q(x, r) is a cube in Rn with its center in x and side lengths equal to r .
Let us then consider a set

Ω =

½
x ∈ Rn : sup

r
ϕx(r) > t

¾
.

As ϕx(r) → 0 when r → ∞, therefore for x ∈ Ω it is possible to find rx > 0 such
that

sup
r≥rx

ϕx(r) ≤ t and sup
r≥ 1

2 rx

ϕx(r) > t.

In this case we let

Qx = Q(x, rx).

The resulting family {Qx}x∈Ω possesses the following important property, sim-
ilar to (4.2).

Proposition 2. Let π = {Qxi} be a subfamily of {Qx}x∈Ω which consists of
cubes with non-overlapping interiors, i.e. Q̊xi ∩ Q̊xj = ∅, i 6= j. ThenX

i

|Qxi |1+
α
n ≤ c

1

t
E(

t

c
, f ;L1, Lipα)

where the constant c ≥ 1 is independent of f , t and π.
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To construct the cubes Qx, for x ∈ RnÂΩ, let us split Rn into cubes Qi,
i = 1, 2, ... with volumes equal to 1, and for x ∈ Ω ∩Qi let us take

Qx = Q(x, εi),

were ε > 0 is a sufficiently small number. If π = {Qxi} is a subfamily of the
constructed family {Qx}RnÂΩ consisting of cubes with disjoint interiors, then not
more than 1

εin cubes from π have their centers in the cube Qi. ThereforeX
i

|Qxi |1+
α
n ≤ c

∞X
i=1

εi(n+α)(
1

εin
) ≤ cεα

and we can see that if ε > 0 is small enough then the whole family {Qx}x∈Rn
possesses the following property.

Property 1. Let

(4.3)
¯̄{Qx}x∈Rn

¯̄
1+α

n

= sup
π={Qxi}

(
X
i

|Qxi |1+
α
n ),

where π consists of cubes with disjoint interiors and sup is taken over all subfamilies
π = {Qxi} of the family {Qx}x∈Rn . Then¯̄{Qx}x∈Rn

¯̄
1+α

n

≤ c
1

t
E(

t

c
, f ;L1, Lipα),

where the constant c ≥ 1 independent of f ∈ L1 and t > 0.
Moreover, from the construction of the cubes Qx we have
Property 2. If a cube Q is not strictly embedded in some cube Qx then

1

|Q|1+α
n
inf
c

Z
Q

|f − c| ≤ t.

4.2.2. Step2. A Covering Theorem. To formulate the theorem we will need the
following definition.

Definition 3. The family of cubes {Ki}i∈I forms a Whitney-Besicovitch cov-
ering (WB-covering for short) if the following three properties hold:

• Pi χKi ≤M(n);
• ∪i 12Ki = ∪iKi;
• if Ki ∩Kj 6= ∅, then |Ki ∩Kj | ≥ ε(n)max(|Ki| , |Kj |), where M(n), ε(n)
are some positive constants depending only on the dimension n.

The main idea of the covering theorem is to construct a WB-covering by en-
larging some of the limiting cubes and to keep the properties (1) and (2).

Let {Qx} = {Qx}x∈Rn be a family of nondegenerate cubes (x is the center of
Qx).

Theorem 6. Suppose that (see 4.3) |{Qx}|1+α
n

< ∞ and α > 0. Then it

is possible to construct a family of cubes {Ki}i∈I that forms a WB-covering and
possesses the following properties:

• if xi is the center of Ki then Qxi ⊂ Ki, i ∈ I;
• for any cube Qx there exists i = i(x) such that Qx ⊂ Ki;

• Pi∈I |Ki|1+
α
n ≤ c(n)

¯̄{Qx}x∈Rn
¯̄
1+α

n

.

Remark 4. The theorem follows from the proof of the covering theorem in
[Kr1].
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Applying the covering theorem to the family of limiting cubes gives us a family
of cubes {Ki}i∈I that satisfies three geometrical properties:

• ∪i 12Ki = Rn;
• Pi χKi ≤M(n);
• if Ki ∩Kj 6= ∅, then |Ki ∩Kj | ≥ ε(n)max(|Ki| , |Kj |);

and two analytical properties:

• P
i |Ki|1+

α
n ≤ c(n)1tE(

t
c(n) , f ;L1, Lipα);

• if a cube Q is not strictly embedded in some cube Ki, i ∈ I, then

1

|Q|1+α
n
inf
c

Z
Q

|f − c| ≤ t.

4.2.3. Construction of a Minimizer for the Couple (L1, Lipα).

Definition 4. A family of C∞ functions {ψi} will be called a partition of the
unity corresponding to the WB-covering {Ki} if

i) 0 ≤ ψi ≤ 1,
P

i ψi = χ∪iKi ;
ii) ψi = 0 outside the cube (

2
3)Ki and ψi ≥ c > 0 on 1

2Ki with the constant c
depending only on the dimension n;

iii) the following estimate holds for the functions ψi:¯̄̄
Dk̄ψi

¯̄̄
≤ γ(n, k̄)

1

|Ki|
|k̄|
n

, Dk̄ =
∂k̄

∂xk11 ...∂xknn
.

The construction of such partition of the unity is standard, see, for example,
[S].

Let us consider a partition of the unity {ψi} that corresponds to the WB-
covering {Ki} constructed from the family of limiting cubes. Then the “good”
function ft can be defined by the formula

ft =
X
i

ciψi, ci =
1R
ψi

Z
fψi.

Now we can formulate the result (see [Kr] ).

Theorem 7. The function ft is a minimizer for the E-functional for the couple
(L1, Lipα).

Remark 5. The formula for the ”good” function ft is similar to the one in the
paper of C. Fefferman and E. Stein [FS]. The main difference is the absence of the
term fχRn\∪Ki

. The reason for that is that in our case ∪Ki = Rn.

Remark 6. The above construction can be generalized in several directions
(see [Kr1], [KrKu]).For example, its generalization works for the couple (Lq, Ẇ

k
p )

under the condition
k

n
+
1

q
− 1

p
> 0,

and for the couple (L1,L1,λ), where L1,λ is a Morrey space constructed on the base
of L1. Recall that the norm in L1,λ is given by the expression
(4.4) kfkL1,λ = sup

Q

1

|Q|1−λ
n

Z
Q

|f | , 1− λ

n
∈ (0, 1).
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4.3. Calculation of the K-functional. Construction of minimizers usually
gives some formula for the K-functional. Let us consider, for example, the couple
(L1,L1,λ) where L1,λ is a Morrey space (see 4.4). LetMλf be a fractional maximal
function

Mλf(x) = sup
Q 3x

1

|Q|1−λ
n

Z
Q

|f | .

To formulate the result we need the notion of the Hausdorff capacity. Let Ω be a
set in Rn, then the Hausdorff capacity of the set Ω can be defined as

μλ(Ω) = inf
Ω⊂∪Qi

X
|Qi|1−

λ
n ,

where inf is taken over all the families of cubes {Qi} such that Ω ⊂ ∪Qi.

Remark 7. Standard notation for Hausdorff capacity of the set Ω is Λ
(∞)
n−λ(Ω).

Although μλ is not a measure, it is still possible to define the decreasing re-
arrangement of the function f with respect to μλ, which we denote by f

∗
μλ
. By the

definition it is a nonincreasing, continuous from the right function on R+ such that¯̄
s : f∗μλ(s) > t

¯̄
= μλ({x : |f(x)| > t} .

Then the following formula is correct (see [KrKu1])

K(t, f ;L1,L1,λ) ≈ t(Mλf)
∗
μλ
(t).

The last formula leads immedeately to an analog of Hardy-Littlewod maximal the-
orem for the fractional maximal operator Mλf (see the discussion in [KrKu1] and
compare with Example 1):

kfk(L1,L1,λ)1− 1
p
,p
≈
µZ ∞

0

(t−(1−
1
p )K(t, f ;L1,L1,λ))p dt

t

¶ 1
p

=µZ ∞
0

((Mλf)
∗
μλ
(t))p dt

¶ 1
p

=

µ
p

Z
Rn
(μλ {x :Mλf > t})tp−1dt

¶ 1
p

.
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