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ABSTRACT. The paper is an exposition of some old results on the stability of
the K-method and recent results on calculation of the K-functional.

1. Introduction

Since the publication of the classical paper by J.L. Lions and J. Peetre [LP],
real interpolation theory has developed into a rich theory with applications to many
different areas of analysis. In this paper we give a short introduction to the general
K-method of interpolation and demonstrate its surprising stability.

A number of applications of interpolation theory, in particular some recent
problems in image processing and singular integral operators, require the com-
putation of suitable K-functionals, as well as precise algorithms for constructing
nearly optimal minimizers. In this paper we will present an algorithm for construct-
ing nearly optimal minimizers based on a generalization of the classical Calderén-
Zygmund decompositions. Our algorithm also leads to new formulas for calculating
suitable K-functionals. In particular, we will illustrate our algorithm on the model
couple (Ly, Lip,,).

2. Preliminaries

We start by briefly recalling the main notions of interpolation theory (see [BL]).

Let Xy and X; be two Banach spaces embedded in some topological vector
space X. We will say that the spaces Xy and X; form a Banach couple X =
(Xo, X1) if the following “compatibility” condition holds:

o [f the sequence y, € XoN X1, n = 1,... is such that it converges in the
norm of Xo to the element xo € Xy and in the norm of X1 to the element
r1 € X1, then xg = x1.

This condition allows us to introduce a Banach structure on the linear spaces
XoN X7 and Xy + X1, namely

Izl xynx, = max(llellx,  lellx,)s 2llxgsx, = _inf  (lollx, +¢llzallx,)-
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Let X = (Xo, X1), Y = (Yo, Y1) be two Banach couples. A linear operator T' from
Xo + X1 to Yy + Y7 is called a bounded linear operator from the couple X to the
couple Y if the restrictions of T on X; (1 = 0,1) are bounded linear operators from
Xz' to Y;

A Banach space X C X+ X7 is called an intermediate space for the couple X
if the continuous embeddings Xo N X; C X C Xy + X3 hold.

An intermediate space X is called an interpolation space if for any bounded
linear operator T from the couple X to itself the restriction of T on X is a bounded
linear operator from X to X.

Let X be an intermediate space for the couple X and let Y be an intermediate
space for the couple Y. We will say that the spaces X and Y are relative interpo-
lation spaces if a restriction of any bounded linear operator 7' from the couple X
to the couple Y is a bounded linear operator from X to Y.

3. The K-method of Interpolation: Introduction to a General Theory
of K-spaces

The modern theory of real interpolation is based on the notion of the K-
functional introduced by J. Peetre. Let us recall its definition.

Let x € Xy + X1, then the K-functional of = is a nonnegative concave function
on R} = (0,00) defined by the formula

Ko X)= it (ol +tlnly,). >0
The K-functional can be obtained from a “distance function”, the so-called
FE-functional :
E(t,z;X)= inf |z—ai|y,, t>0.

s I, <t

REMARK 1. We deviate somewhat from the standard motation E(t,x;)z) =
inf g <t 12 = 2ollx, -

Clearly,

—

K(t,z; X) = inf (B(t,x; X) + ts)

and conversely for any Banach couple X we also have

E(s,z; X) = sup(K (¢, z; X) — ts).
>0
One of the advantages of using the K-functional instead of the E-functional is
that the K-functional possesses several very nice properties that the E-functional
does not have.
Let us now list the main properties of the K-functional.

—

e For a fixed t > 0 the expression K (¢, -; X) is a norm on the space Xo+ X;.
e For the couple X7 = (X1, Xo) we have K(t,z; XT) = tK(t !, x; X).

The proofs of these properties are simple and direct.
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Much less trivial is the following K-divisibility property (see [BK], pp. 315-
337).

e Let - -
K(’ZI;?X‘)SZ@“ Z‘pi(l)<ooa
i=1 i=1

where ¢; (i = 1,...) are nonnegative concave functions on Ry. Then there
exists a decomposition z =Y .-, x; such that

where « is an absolute constant.

REMARK 2. It is known (see [BK] and [CIM]) that 1.5 < v < 6.

The importance of the K-functional for interpolation arises from the following
simple proposition.

PROPOSITION 1. Let T be a linear bounded operator from the couple X =

(Xo, X1) to the couple Y = (Yy,Y1). Then we have the estimate
V)< i < . X).

KT V)< _int (ITwolly, +¢1Toly,) < max [Ty, K(t,25 %)

On the basis of the K-functional we can construct interpolation spaces (K-
spaces). A Banach space ® of measurable functions on R is called a parameter of
the K-method if it satisfies the following two properties:

e if f€ P and |g| < |f] then g € ® and [lg]ly < llg]lo:
e min(1l,¢) € P.

The last condition means that ® contains at least one nonnegative concave
function. Then the space K¢(X) is defined as the set of elements x € Xo+ X5 such
that

lallicy ) = | K G X)) -

It is possible to verify that K@(X ) is an intermediate space for the couple X.
Moreover, from Proposition 1 we immediately obtain

THEOREM 1. (On interpolation) Let T be a bounded linear operator from the
couple X = (Xo,X1) to the couple Y = (Yp,Y1). Then T is a bounded linear
operator from the space Ko(X) to the space Ko(Y).

REMARK 3. As we have seen, the interpolation theorem follows directly from
the definitions. This triviality is “compensated” by the difficulty of calculation of
spaces Ko(X) for concrete couples X.

For some couples all interpolation spaces are K-spaces and so they can be
parameterized by the parameters of the K-method. An important example of such
couples is presented in the following theorem.

THEOREM 2. Let X = (Lp,(wo), Ly, (w1)) be a couple of weighted Lebesque
spaces. Then all interpolation spaces of X are K-spaces.

The proof of the theorem follows from the result of G. Sparr which states
that the couple (Ly,(wo), Ly, (w1)) is a Calderén couple and Lemma 4.1.12 from

[BK]. Recall that the couple X = (X, X1) is called a Calderén couple if from
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the inequality K (-, x; X ) > K(,y; X ) it follows that there exists a bounded linear
operator T : X — X such that Tx = y.

3.1. Stability of K-spaces. Now we are ready to formulate the main results
of the general theory: reiteration and duality.

To formulate the reiteration theorem first note that different parameters ® of
the K-method can lead to the same space K¢<X ). This happens because the K-
functional is a nonnegative concave function and therefore only the restriction of
the norm of ® on the cone of nonnegative concave functions on R, is important.

For example, if we consider a parameter ® of the K-method defined by the norm
11s = || ], -

where by f we denote the least concave majorant of the function |f|, then we have
K3 (X) = K4(X) for all couples X even with the equality of the norms.
The question that is answered in the reiteration theorem is the following.

PROBLEM 1. Let X be a Banach couple. Suppose that the spaces Yy, Y7 are
obtained by the K-method from a couple X, i.e. Y; = Kg,(X) (i =0,1). How can
we calculate the space Ko(Y)?

Surprisingly, the resulting space is again the K-space of the initial couple X
and a formula for its parameter can be given.

THEOREM 3. (On reiteration) Let ®, ®g, Oy be parameters of the K-method.
Then the following formula is correct:

— — —

(3.2) Ko (Ka, (X), Ko, (X)) = Ko (X),

where U = Kq,(éo,i)l), The equality of spaces in (3.2) means that they coincide
and their norms are equivalent with the constants of equivalence independent of X .

The proof of the reiteration theorem follows quite easily from the K-divisibility
(see [BK], Theorem 3.3.11).

Let us now turn to the duality. Let a couple X = (Xo, X1) be regular, i.e. the
Banach space Xy N X; is dense in Xy and in X;. For a regular couple the dual
spaces X, X| are embedded in the space (Xo N X;)" and form a Banach couple
(see [BL]). Moreover, if X is an intermediate space for the couple X, then we can
define its dual space X’ C (Xo N X1)" as a dual of the space X°, where by X° we
denote the closure of the set Xg N X; in X.

The problem of duality can be formulated as follows.

PROBLEM 2. Suppose that a couple X is regular. How can we calculate the

—

dual space to Kg(X)?

Of course, it is natural to expect that the dual of a K-space is again a K-
space for the dual couple X' = (X4, X1). Unfortunately, this is not correct: the
dual to the space Kg ()Z) does not have to be an interpolation space for the couple
X', as can be seen from the proof of Theorem 2.4.17 in [BK]. Nevertheless, the

iy
expectation is met if we impose some mild conditions on X or on the parameter ®.
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DEFINITION 1. A parameter ® of the K-method is called nondegenerate if ®
contains at least one nonnegative concave function f such that

f T = i 1) =

DEFINITION 2. A couple X s called relatively complete if the unit ball of the
space Xo N X1 is a closed subset of the space Xg + X;.

To formulate the duality result we will need to consider the Calderén operator

sn0=[ 165w [ 565,

The operator S is defined on the functions f on R, that belong to the space L1 (w),
w= min(%, S%), so the integrals in the definition of S converge absolutely.

Next theorem follows from Theorem 3.5.9, Theorem 3.7.2, and Proposition
3.1.17 from [BK].

THEOREM 4. (On duality) Let X bea reqular couple. Suppose that one of the
following conditions is satisfied:

a) the parameter ® of the K-method is nondegenerate;

b) X isa relatively complete couple.

Then the dual space to K¢ ()?) is a K-space for the dual couple and

Ko(X) = Kg(X'),

where the norm in the parameter VU is given by the expression
° 1.dt
I =sun{ [~ 00 S < 15all <1}

4. Calderén-Zygmund type decompositions and K-functional

To apply the theory we need to calculate K-functionals. This is usually a
difficult problem and each solved case contains some nontrivial information.
Let us look at some examples.

EXAMPLE 1. Let us consider the couple (L1, Loo). It is known that
(4.1) K(t, f; L1, Loo) = t(M f)*(t),
where

1
Mf(z) = gggQ/QIfl

is a Hardy-Littlewood maximal function. Here and below the constants of equiva-
lence are independent of f and t, and @ is a cube in R™ with sides parallel to the

coordinate axes. Since L, = (Ll,LOO)l_%m, we have

o0 1 d %
1fllz, ~ (/O (t(lz)K(t,f;LhLoo))p_t> _

([T oy a) = ([ orswra)” =,

and we can see that the formula (4.1) leads to the Hardy-Littlewood maximal theo-
rem: ||fll., = IMfll,-

S o+
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EXAMPLE 2. Let us consider the couple (Ly, V'Vlf), p € (1,00). It is known that
K(t, f; Ly, W) ~ wi(f,t%),,

where wi(f,t)p is the k-th modulus of continuity in L,. From this formula and the
closedness of the unit ball sz in Ly for p € (1,00) follows the description of the
Sobolev space sz in terms of the modulus of continuity

1 . 1 1
Hf”Wk ~ sup _K(taf;Lpa [[;) ~ sup _wk(fvtk)p'
P40t t>0 t

For some problems it is important to have an algorithm for constructing a
family of elements u; € X; such that

K(t,z; Xo, X1) = |7 — wel| x, +t |luell , »

with the constants of equivalence independent of x and t. We will call such de-
compositions near minimizers for the K-functional. For some couples it is easier
to construct near minimizers for the E-functional, i.e. such a family of elements
Uy € X1 that

luelly, < et and e —ully, < eB(, X0, X),

: : : — 9. K(s1:X0,X1)
with ¢ > 1 independent of x and ¢ > 0. Note that if we take { = 2¢———=0l)
then it is not difficult to show that u; will be a near minimizer for the K-functional
at the point s.

An important example of a problem for which we need to find a near minimizer
comes from image processing. In the paper [ROF] L. Rudin et al. proposed to
reconstruct the geometrical properties of an object from its noisy image by means
of calculating the function u; which minimizes the L-functional

L(t, f; Ly, BV) = (If = ullz, +tlullpv),

inf
uEBV
where all functions are defined on a rectangle in R? and BV is a space of functions
of bounded variations defined by the seminorm

1
111y = sup 71 (f. ).
t>0

Recently this approach to denoising has become quite popular, see, for example,
[TNV] and the book [M].
Note that for s = tK(t, f; L2, BV) we have

L(Saf;LQaBV) ~ K(tafaL27Bv)2

(see [BK], p. 520). Therefore instead of the L-functional it is possible to consider
the K-functional

K(t, f; Ly, BV) = (f =ullp, +tlullgy)

inf
ueBV
and it is sufficient to solve the problem of constructing minimizers for the K-
functional. A wavelet-based approach to this problem was considered in several
papers, see [CDPH], [CDDD], and [BDKPW].
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Let us formulate the result for the multivariate Haar system H; (i € A) nor-
malized in the space BV, i.e. |H| 5, = 1 for all i. We let

Gn(f) = Z ciHi, f:ZCﬂ'L

i€ AN
where Ay is a subset of N elements of A that correspond to the coefficients ¢; with
the largest absolute values. Then we have

THEOREM 5. (see BDKPW]) Let p. = —2=, wheren > 2 is a dimension. Then

n—17
K(NTH [ Ly BY) = [ = Gy, + N H IO (Dl

So we see that a near minimizer for the couple (L,,,BV) can be constructed
using a greedy wavelet algorithm.

Below we will suggest another general approach to the problem of construct-
ing near minimizers and calculating the K-functional. Our approach is based on
a generalization of classical Calderén-Zygmund decompositions. These decomposi-
tions were used recently to solve some problems in the theory of singular integral
operators, see [KK], [KiKr] and [KiKr1].

4.1. Classical Calderén-Zygmund Decompositions and Near Mini-
mizers. In their classical paper [CZ], A. Calderén and A. Zygmund suggested a
simple construction that proved to be a very powerful and useful tool in harmonic
analysis. The decomposition is constructed as follows.

Let f € L1 and t > 0 be fixed. Then using stopping time technique it is possible
to construct a family of dyadic cubes {Q;},.; with nonoverlapping interiors such

that
)
t< lf]<2mt, qel
1Qil Ja,
and
Xl <t

Then the Calderén-Zygmund decomposition is defined as

f=Ff+{f—fo)
where the so-called ”good” function f; is given by the formula
1 .
fe=> cxa + fxemugn =7 | fLiEl
Z. @l Jo,

Clearly, [|fi||; < 2"t. More interestingly, the function f; is a near minimizer for
the E—functional

t
||f - ft”Ll S 4E(§7f7L17Loo)
Indeed,

ERVAPED OY TEF L) 3Y MUEED 9T
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and it only remains to note that

t
W2 B St = ||g\|Lw M=l = HLOO : (Z/ f - gl)
¢
HgllL é( / f1= / |g> >Zt‘Qz \Qz|)Z§¥|Q1‘

This simple observation suggests that an extension of the Calderén-Zygmund
construction for couples different from (L1, Lo) could be useful for constructing
near minimizers.

4.2. A Generalization of the Calderén-Zygmund Construction. To
avoid technicalities we will only consider here the model case (L1, Lip,), where
the space Lip, is defined by the seminorm

— aup T@) = FW)I
IIf\ILipa—giI; oy

The exposition below follows [Kr] . Our algorithm will provide a method to con-
struct near minimizers for the E-functional of the couple (L1, Lip ).

Let us fix f € L; and t > 0. Constructing the “good” function f; € Lip, is
done in three steps.

4.2.1. Step 1. Limiting cubes. In this step we use a stopping time technique to
construct a family of cubes that possesses two important properties.

For z € R™ let us consider a function

1
cpw(r):—ginf/ |f—cl,
Q(, )" ¢ Joen

where Q(z,7) is a cube in R™ with its center in x and side lengths equal to r .
Let us then consider a set

0= {x € R" : sup ¢, (r) > t} .
As p,(r) — 0 when r — oo, therefore for x € Q it is possible to find r, > 0 such

that
sup pL(r) <t and sup @5 (r) > t.

r>Te TZ%TT,
In this case we let
Qz = Q(.’E, T:c)'

The resulting family {Q.}, . possesses the following important property, sim-
ilar to (4.2).

PROPOSITION 2. Let m = {Qg,} be a subfamily of {Qs},cq which consists of
cubes with non-overlapping interiors, i.e. Qxl N QIJ =0,i+#j. Then

Z |Qa,

where the constant ¢ > 1 is independent of f, t and .

HE <es E( ,f; L1, Lipa)
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To construct the cubes @, for x € R™\(Q, let us split R™ into cubes Q;,
1 =1,2,... with volumes equal to 1, and for x € QN Q; let us take

Qac = Q(:L',é‘i),

were € > 0 is a sufficiently small number. If 7 = {Q,,} is a subfamily of the

constructed family {QI}RR\Q consisting of cubes with disjoint interiors, then not

more than 6Tlncubes from 7 have their centers in the cube @;. Therefore

oo
o . 1
§ : +5 § ’ (nta)
- |QCE1| SCi:1€Zn a(sz’n>§66a

and we can see that if ¢ > 0 is small enough then the whole family {Q,}
possesses the following property.
Property 1. Let

(4.3) {Qetocmnliia = swp (O 1Qu,
" ”:{Q%‘} %

zER™

1+%)

)

where 7 consists of cubes with disjoint interiors and sup is taken over all subfamilies
T = {Q,} of the family {Q.},cpn- Then

1t .
HQJE}:@GR" 142 < CEE(Eu f; Lla Llpa)v
where the constant ¢ > 1 independent of f € L and ¢t > 0.
Moreover, from the construction of the cubes @, we have
Property 2. If a cube Q is not strictly embedded in some cube @, then

)
———inf | |f—¢ <t
QI e Jg

4.2.2. Step2. A Covering Theorem. To formulate the theorem we will need the
following definition.

DEFINITION 3. The family of cubes {K;};.; forms a Whitney-Besicovitch cov-
ering (WB-covering for short) if the following three properties hold:
L Zi Xf(Z S M(n)f
o Uiz K; = U K;;
o if K;NK,; #0, then |K; N K;| > e(n)max(|K;|,|Kj|), where M(n), e(n)
are some positive constants depending only on the dimension n.
The main idea of the covering theorem is to construct a WB-covering by en-
larging some of the limiting cubes and to keep the properties (1) and (2).
Let {Q:} = {Qz},crn be a family of nondegenerate cubes (z is the center of

Q).

THEOREM 6. Suppose that (see 4.3) {Qu}, o < 00 and o > 0. Then it
is possible to construct a family of cubes {Ki}iel that forms a WB-covering and
possesses the following properties:

o if x; is the center of K; then Q., C K;, i€ I;

e for any cube Q. there exists i = i(x) such that Q. C K;;
142

o > s KT <e(n) }{Qx}mGR”h-&-% :

REMARK 4. The theorem follows from the proof of the covering theorem in
[Krl].
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Applying the covering theorem to the family of limiting cubes gives us a family
of cubes {Ki}z'e ; that satisfies three geometrical properties:
° i xK; < M(n);
o if K;NK;#0, then |K; N K| > e(n)max(|K;|,|Kj|);
and two analytical properties:
* > K| < C(“)%E(ﬁaf;LhLipa);
e if a cube Q is not strictly embedded in some cube K;, i € I, then

1 . /
——inf | |f—¢| <t
QI ¢ Jo
4.2.3. Construction of a Minimizer for the Couple (L1, Lipy).

DEFINITION 4. A family of C™ functions {1¢;} will be called a partition of the
unity corresponding to the WB-covering {K;} if

i) 0 < <1, 570 = XUk, S

i) ¥; = 0 outside the cube (%)K, and ¥; > ¢ >0 on %K, with the constant c
depending only on the dimension n;

i11) the following estimate holds for the functions ;:

1 . ok
<~(n,k)——, DF = —— .

The construction of such partition of the unity is standard, see, for example,

D,

[S].

Let us consider a partition of the unity {¢;} that corresponds to the WB-
covering {K;} constructed from the family of limiting cubes. Then the “good”
function f; can be defined by the formula

1
ftZZi:Cil/Jm Ci:m/fwi-

Now we can formulate the result (see [Kr] ).

THEOREM 7. The function f; is a minimizer for the E-functional for the couple
(Ll, L’ipa) .

REMARK 5. The formula for the "good” function f; is similar to the one in the
paper of C. Fefferman and E. Stein [F'S]. The main difference is the absence of the
term fxwrn\uk,- The reason for that is that in our case UK; = R™.

REMARK 6. The above construction can be generalized in several directions
(see [Kr1], [KrKu]).For ezample, its generalization works for the couple (Lg, WF)

under the condition

E 1 1

—+-—==>0,

noq p
and for the couple (Ly, LY), where LY is a Morrey space constructed on the base
of L1. Recall that the norm in LY is given by the expression

1 A
(1.4) Il =530 /Q A, 1-2e ),
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4.3. Calculation of the K-functional. Construction of minimizers usually
gives some formula for the K-functional. Let us consider, for example, the couple
(L1, L) where £ is a Morrey space (see 4.4). Let M, f be a fractional maximal
function

1
My f(z) = sup ﬁ/ If1-
Qa3 |Q ™ J
To formulate the result we need the notion of the Hausdorff capacity. Let Q be a
set in R™, then the Hausdorff capacity of the set {2 can be defined as

_ -3
(@) = inf > 1QiITT,
where inf is taken over all the families of cubes {Q;} such that Q C UQ;.

REMARK 7. Standard notation for Hausdorff capacity of the set 0 is A%OS)A Q).

Although py is not a measure, it is still possible to define the decreasing re-
arrangement of the function f with respect to ., which we denote by f; . By the
definition it is a nonincreasing, continuous from the right function on Ry such that

s fia(s) > t] = m({z : |f(2)] >t}
Then the following formula is correct (see [KrKul])
K(t, f; Ly, £%) = t(Mf);,, (B).

The last formula leads immedeately to an analog of Hardy-Littlewod maximal the-
orem for the fractional maximal operator M) f (see the discussion in [KrKul] and
compare with Example 1):

1
a1 dt\ »
HfH(Ll’ﬁl’)\)l_l,p = <A (t 1 ;)K(t’f;LhﬁL)\))pT) —

([ nror ) = (o [ oty > e a)’

References

[BDKPW] P. Bechler, R. DeVore, A. Kamot, G. Petrova, P. Wojtaszczyk, Greedy Wavelet Pro-
jections are Bounded on BV, Transactions of AMS 359 (2007), 619-635.

[BL] J. Bergh, J. Lofstrom, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin,
1976.

[BK]  Ju.A. Brudnyi, N. Kruglyak, Interpolation Functors and Interpolation Spaces 1, North
Holland, Amsterdam, 1991.

[CZ] A.P. Calderén, A. Zygmund, On the Existence of Certain Singular Integrals, Acta Math.
88 (1952), 85-139.

[CDPH] A. Cohen, R. DeVore, P. Petrushev, H Xu, Nonlinear Approzimation and the Space
BV(R?), American Journal of Mathematics 121 (1999), 587-628.

[CDDD] A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic Analysis of the Space BV,
Rev. Mat. Iberoamericana 19 (2003), 235-263.

[CIM] M. Cwikel, B. Jawerth, M. Milman, On the fundamental lemma of interpolation theory,
J. Approx. Th. 60 (1990), 70-82.

[FS] C. Fefferman, E.M. Stein, HP Spaces of Several Variables, Acta Math. 129 (1972), 137-
193.

[KK] S. Kislyakov, N. Kruglyak, Stability of Approximation Under the Action of Singular In-
tegral Operators, Functional Analysis and its Applications 40 (2006), no 4, 285-297.

[KiKr| S. Kislyakov, N. Kruglyak, Stability of Approzimation under Singular Integral Operators
and Calderdén-Zygmund Type Decompositions II, preprint 1734 (2005), Erwin Schrédinger
International Institute for Mathematical Physics, Vienna.



12

NATAN KRUGLYAK

[KiKr1] S. Kislyakov, N. Kruglyak, Stability of Approximation under Singular Integral Operators

[Kr]

[Kr1]

and Calderén-Zygmund Type Decompositions, preprint 07 (2005), St.-Petersburg Steklov
Mathematical Institute.

N. Kruglyak, Investigations on the Real Interpolation Method, Doctor of Science Thesis,
Steklov Institute of Mathematics, St.-Petersburg Division, 1996.

N. Kruglyak, Smooth Analogs of Calderon-Zygmund Decompositions, Quantitative Cov-
ering Theorems and the K-functional (Russian), Algebra i Analiz 8 (1996), no. 4, 110-160,
English translation in St.-Petersburg Math. Journal 8 (1997), no. 4, 617-649.

[KrKu] N. Kruglyak, E. Kuznetsov, Smooth and Nonsmooth Calderén-Zygmund Decompositions

for Morrey Spaces, J. Fourier Analysis and Applications 11 (2005), no. 6, 697-714.

[KrKul] N. Kruglyak, E. Kuznetsov, Sharp Integral Estimates for the Fractional Mazimal Func-

[LP]
[M]
[ROF]
[S]

[TNV]

tion and Interpolation, Arkiv for Matematik 44 (2006), no. 2, 309-326.

J.L. Lions, J. Peetre, Sur une classe d’espaces d’interpolation, Publ. Math. Inst. Hautes
Etudes Sci., 19 (1964), 5-68.

Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,
University Lecture Series vol. 22, AMS, Providence, 2001.

L. Rudin, S. Osher, C. Fatemi, Nonlinear Total Variation Based Noise Remowval Algo-
rithms, Physica D, vol. 60, 259-268, 1992.

E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton, New Jersey, 1970.

E. Tadmor, S. Nezzar, L. Vese, A Multiscale Image Representation Using Hierarchical
(BV, L2) Decompositions, Multiscale Model. Simul. 2 (2004), no. 4, 554-573.

DEP. OF MATHEMATICS, LULEA UNIVERSITY OF TECHNOLOGY
E-mail address: natan@ltu.se
URL: http://www.math.ltu.se/ natan



